240 research outputs found

    Seeing light vs dark lines: psychophysical performance is based on separate channels, limited by noise and uncertainty

    Get PDF
    Visual detection performance (d') is usually an accelerating function of stimulus contrast, which could imply a smooth, threshold-like nonlinearity in the sensory response. Alternatively, Pelli (1985 Journal of the Optical Society of America A 2 1508 - 1532) developed the 'uncertainty model' in which responses were linear with contrast, but the observer was uncertain about which of many noisy channels contained the signal. Such internal uncertainty effectively adds noise to weak signals, and predicts the nonlinear psychometric function. We re-examined these ideas by plotting psychometric functions (as z-scores) for two observers (SAW, PRM) with high precision. The task was to detect a single, vertical, blurred line at the fixation point, or identify its polarity (light vs dark). Detection of a known polarity was nearly linear for SAW but very nonlinear for PRM. Randomly interleaving light and dark trials reduced performance and rendered it non-linear for SAW, but had little effect for PRM. This occurred for both single-interval and 2AFC procedures. The whole pattern of results was well predicted by our Monte Carlo simulation of Pelli's model, with only two free parameters. SAW (highly practised) had very low uncertainty. PRM (with little prior practice) had much greater uncertainty, resulting in lower contrast sensitivity, nonlinear performance, and no effect of external (polarity) uncertainty. For SAW, identification was about v2 better than detection, implying statistically independent channels for stimuli of opposite polarity, rather than an opponent (light - dark) channel. These findings strongly suggest that noise and uncertainty, rather than sensory nonlinearity, limit visual detection

    Management of interstitial lung disease (ILD) in myositis syndromes: A practical guide for clinicians

    Get PDF
    Inflammatory myopathies are heterogeneous clinico-serological syndromes, with variable clinical manifestations. Interstitial lung disease (ILD) is a major cause of morbidity and mortality in patients with myositis. The clinical manifestation of myositis-ILD is heterogeneous, e.g., with acute-on-chronic presentations, as well as the chronic aftermath of acute disease. Here, we have largely divided myositis-ILD into three main prognostic groups which require different treatment approaches: mild-moderate (subacute), severe or progressive (acute or subacute) and rapidly progressive, life-threatening. In current clinical practice, the treatment of myositis-ILD involves immunomodulation in an induction-maintenance treatment paradigm. There is now an option to add antifibrotics to slow the progression of established fibrosis in selected cases with chronic progressive phenotype. Here, we describe current concepts in myositis-ILD and aim to provide a practical guide for clinicians on how to approach assessment, including early identification of ILD, phenotyping of patients according to clinical trajectory and likely prognosis and stratified management adopting multi-disciplinary cross-speciality expertise, with close collaboration between rheumatology and respiratory physicians

    COVID-19, SARS and MERS:A neurological perspective

    Get PDF
    Central to COVID-19 pathophysiology is an acute respiratory infection primarily manifesting as pneumonia. Two months into the COVID-19 outbreak, however, a retrospective study in China involving more than 200 participants revealed a neurological component to COVID-19 in a subset of patients. The observed symptoms, the cause of which remains unclear, included impaired consciousness, skeletal muscle injury and acute cerebrovascular disease, and appeared more frequently in severe disease. Since then, findings from several studies have hinted at various possible neurological outcomes in COVID-19 patients. Here, we review the historical association between neurological complications and highly pathological coronaviruses including SARS-CoV, MERS-CoV and SARS-CoV-2. We draw from evidence derived from past coronavirus outbreaks, noting the similarities and differences between SARS and MERS, and the current COVID-19 pandemic. We end by briefly discussing possible mechanisms by which the coronavirus impacts on the human nervous system, as well as neurology-specific considerations that arise from the repercussions of COVID-19.</p

    Etymology and the neuron(e)

    Get PDF

    The era of cryptic exons: implications for ALS-FTD

    Get PDF
    TDP-43 is an RNA-binding protein with a crucial nuclear role in splicing, and mislocalises from the nucleus to the cytoplasm in a range of neurodegenerative disorders. TDP-43 proteinopathy spans a spectrum of incurable, heterogeneous, and increasingly prevalent neurodegenerative diseases, including the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum and a significant fraction of Alzheimer's disease. There are currently no directed disease-modifying therapies for TDP-43 proteinopathies, and no way to distinguish who is affected before death. It is now clear that TDP-43 proteinopathy leads to a number of molecular changes, including the de-repression and inclusion of cryptic exons. Importantly, some of these cryptic exons lead to the loss of crucial neuronal proteins and have been shown to be key pathogenic players in disease pathogenesis (e.g., STMN2), as well as being able to modify disease progression (e.g., UNC13A). Thus, these aberrant splicing events make promising novel therapeutic targets to restore functional gene expression. Moreover, presence of these cryptic exons is highly specific to patients and areas of the brain affected by TDP-43 proteinopathy, offering the potential to develop biomarkers for early detection and stratification of patients. In summary, the discovery of cryptic exons gives hope for novel diagnostics and therapeutics on the horizon for TDP-43 proteinopathies
    • …
    corecore